
Dynamic bandwidth allocation in multi-class

connection-oriented networks

Samer Taha*,1, Mohsen Kavehrad

Electrical Engineering Department, The Pennsylvania State University, University Park, State College, PA 16802, USA

Received 2 August 2002; revised 17 April 2003; accepted 30 April 2003

Abstract

Multi-class network is becoming a more attractive solution to provide Quality-of-Service guarantee, as more quality-demanding

applications are emerging. This research considers networks that provide connection-oriented services, as in ATM and MPLS technologies,

for example. A common scheme for Dynamic Bandwidth Allocation (DBA) in connection-oriented communications is to dynamically

segregate bandwidth between different traffic categories. These categories can represent topological Virtual Paths or different Classes-of-

Service with different Quality-of-Service requirements. Bandwidth segregation can be efficient if and only if demands for different Classes-

of-Service or different Virtual Paths can be predicted accurately. This led us to develop a novel algorithm that has a much wider vision in

allocating resources than classical distributed algorithms. We call the proposed algorithm, Virtual Demand Distribution (VDD) algorithm.

This algorithm utilizes signaling packets to broadcast information that enhances the performance of DBA algorithms. Mathematical analysis

of multi-class connection-oriented networks and performance analysis/comparisons of the proposed VDD algorithm and a Simple

Distributed algorithm are presented.

q 2003 Elsevier B.V. All rights reserved.

Keywords: Dynamic bandwidth allocation; Quality-of-Service; Multi-class Network

1. Introduction

Dynamic Bandwidth Allocation (DBA) for networks

carrying multi-class traffic has been investigated within

different contexts. We are concerned with architectures that

work on the call level. Most of the work at this level was

directed to dynamically allocate bandwidth to different

Virtual Paths (VPs). The VP concept is a basic characteristic

of ATM and ISDN networks, which provide connection-

oriented services. VPs can be designed based on topological

optimization. Also, bandwidth can be segregated between

different CoSs with different QoS requirements, as in Ref. [1].

Bandwidth segregation is an effective way of managing

resources to serve different CoSs of traffic with different

QoS requirements. However, as was shown in Ref. [2],

allocating bandwidth to VPs may lead to a lower efficiency

(throughput) if bandwidth is not carefully (optimally)

allocated. We point out that the basic reason for

non-optimal allocation of bandwidth is the difficulty and

inaccuracy in predicting demands for different CoSs. One of

the essential reasons for this inaccuracy is the nature of most

DBA algorithms, which are absolutely distributed.

Much work has been done recently on traffic engineering

over MPLS architectures Ref. [3]. However, most of the

efforts were directed to dynamically distribute load on

alternative paths in order to efficiently utilize resources

while achieving the best possible (QoS), like the work in

Refs. [4,5]. Although CoSs were also supported in these

studies, little efforts were directed to optimize the allocation

of bandwidth among CoSs in a common link.

We believe DBA, traffic engineering, and routing are

related tasks and cannot optimally perform without

cooperation with each other. Routing and load distribution

on alternative paths—Label Switched Paths (LSPs) in

MPLS context—can be viewed as a necessary process on

small time scales to efficiently utilize scattered resources.

This process takes place at the edge of an MPLS network

(ingress nodes). But at the same time, there can be

competition on bandwidth between different LSPs, which

may represent different CoSs, at each link in the network,

0140-3664/03/$ - see front matter q 2003 Elsevier B.V. All rights reserved.

doi:10.1016/S0140-3664(03)00145-2

Computer Communications 27 (2004) 13–26

www.elsevier.com/locate/comcom

1 Current address: Mail Stop RA3-250, LTD Automation—Ronler Acres

3, Intel Corporation, Oregon, USA.

* Corresponding author. Tel.: þ1-503-613-0270; fax: þ1-503-613-6494.

E-mail address: samer.m.taha@intel.com (S. Taha).

http://www.elsevier.com/locate/comcom

both at the core and at the edge of an MPLS network. As the

aggregated demand for different CoSs/LSPs varies slowly

over time, a DBA process is necessary to optimally

distribute bandwidth between competing CoSs/LSPs based

on a specific objective function. This objective function

usually takes into consideration user-utilities and revenues,

which are functions of QoS, pricing model, and regulations

governing different CoSs. From here on, we will use the

concept of CoSs to refer to both LSPs and classes of

different levels of QoS in any connection-oriented multi-

class network.

In the context of connection-oriented services, usually

objective functions can be designed at higher levels, like

controlling the blocking rates of calls. We can assume that a

lower level control will take the responsibility of computing

the required bandwidth by each call, based on the CoS of

that call, the QoS specifications of that CoS, and the

optimization criteria defined for that CoS. This computed

bandwidth is usually called ‘effective bandwidth’ Ref. [6].

So, these low level controls may, for example, minimize the

average delay of sessions within a specific CoS or minimize

the average packet loss rate for sessions within another CoS,

and so on. On the other hand, a higher-level control is

needed to allocate (segregate) bandwidth between the CoSs

in an optimal way. We recommend that these two levels of

control be carried at different layers, this would achieve two

objectives: first, routing stability; since this dynamic

segregation of bandwidth would usually be a slow process

and thus QoS routing algorithms can have valid and

meaningful information about the status of the network.

Second, controlling call blocking rates of different CoSs

would become a possible task. Controlling the call blocking

rates is expected to be an important issue, especially when

advanced pricing systems will be introduced Ref. [7].

When we consider different DBA algorithms, we can

classify them to centralized and decentralized algorithms.

Centralized algorithms provide a single point of failure and

require huge amounts of information, which is, usually,

broadcasted using flooding protocols. Also, their ability to

provide a solution for a large-scale network with varying

demands in an appropriate time is questionable. On the other

hand, decentralized algorithms are implementable, but

cannot provide an optimal solution because they don’t

have a global vision of the network.

The major contribution of this paper is that we propose

and evaluate a novel algorithm that performs a slow DBA to

allocate bandwidth globally over all backbone links of a

multi-class connection-oriented network. We call this

proposed algorithm Virtual Demand Distribution (VDD)

algorithm. The VDD algorithm is a distributed algorithm

that can approach global optimality. The VDD collects more

information than classical distributed algorithms, but the

amount of collected information is still small, compared

with the amount of information that any centralized

algorithm needs in order to achieve global optimality.

This extra information is obtained by utilizing the signaling

messages used for establishing new connections in any

multi-class network providing connection-oriented services.

Also, to provide stability for routing algorithms we avoid

using rapid DBA (on a per-session level) control. Instead,

our slow DBA system deals with aggregates of traffic and

responds to variations in demands on a relatively slow basis.

The word ‘relatively’ here means with respect to the speed

of updating routing tables.

We approach the development of this algorithm

throughout two stages of analysis. In the first stage, we

analyze the dynamics of DBA implemented in a single link,

assuming stationary traffic with variable-size calls and

known statistics. In this stage, we demonstrate the effect of

transient responses on predicting blocking rates of calls

when a Complete Partitioning (CP) schema is used and we

develop an algorithm for optimal resource allocation by

extending the recursive algorithm proposed in page 25 of

Ref. [8]. In the second stage, we analyze a multi-link multi-

class connection-oriented loss network and emphasize the

difficulty in accurately predicting demands in such an

environment. In this stage we develop a framework for

analyzing demands and call blocking rates of non-stationary

traffic in a multi-link network and then we develop a novel

algorithm to accurately predict demands for different CoSs

in a multi-link multi-class loss network. These accurately

predicted demands could then be used to allocate resources

based on the algorithm that was developed in the first stage.

The algorithms developed in these two stages combined

together form the proposed VDD algorithm. To evaluate the

performance of the proposed VDD algorithm we used

Bones Designer, a sophisticated simulation tool, and built a

multi-node network with a configuration shown in Fig. 1.

We built this simulation to emulate an as real a network as

possible, with 48 h of non-stationary varying traffic

generated at each node. A detailed description of this

simulation is provided in Section 5. In addition to VDD

algorithm, we simulated performance of an equivalent

Simple Distributed (SD) algorithm, applied to two CoSs. As

we mentioned above, in Section 2 we start by analyzing

DBA algorithms and call blocking rates in a single

communication link.

2. Single-link analysis

When different traffic categories or classes share a

common link, three possible resource-sharing techniques

can be considered. These are Complete Sharing (CS),

Virtual Partitioning (VPT), and Complete Partitioning (CP).

In CS, no control over the performance of different CoSs

can be exercised. However, it is the simplest possible

technique and works well under light loads. But, a well-

designed network should not be lightly loaded all the time.

In CP, a strict control over the performance of any CoS can

be exercised, but wastage of resources is an issue to worry

about. Under high load conditions, CP works very well if

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–2614

and only if demands on different CoSs can be estimated

accurately. VPT can be considered as a mixture of both CS

and CP techniques. Resources are not wasted under VPT

technique, but because of the possible sharing of resources

by different CoSs and because performance depends on

allocated capacities to different CoSs, no strict control over

the blocking rates of different CoSs can be achieved,

especially when the traffic is non-stationary. Trunk-

Reservation DBA is an example of a VPT scheme.

In this paper, we are interested in a highly-utilized

backbone network supporting different CoSs which are

sensitive to call blocking rates. Because of the differences in

these CoSs due to differentiation in treating different

sessions of these CoSs at the packet level, or because

some CoSs may represent VPs with different geographical

significance, a differentiation between the blocking rates of

these CoSs is desired. Thus, we will adopt a CP scheme,

where capacities will be dynamically allocated in a non-

stationary traffic environment. To approach the analysis of

call blocking rates estimates in a multi-link multi-class

network carrying non-stationary traffic and adopting a DBA

under a CP scheme, we start in Section 2.1 by analyzing the

call blocking rates in a single-link with one CoS carrying

stationary traffic, then we will continue building on the

results of this subsection in the rest of the paper.

2.1. Call-blocking probability for one CoS of stationary

traffic with variable size bandwidth requests

We consider here predicting the call blocking rate

experienced by calls with stationary Poisson arrival process,

stationary exponential holding time, and variable-size

requests with known distribution. Such systems are known

as stochastic Knapsack systems. In Appendix A, we review

several formulas and algorithms developed so far with

different model assumptions, and we show that there is no

closed-form formula for predicting call blocking rates in such

systems, neither in an exact nor in an approximate form.

Thus, we found that the following recursive algorithm is the

best to build upon for deriving a DBA algorithm with the

objective of controlling the call blocking rates of different

CoSs. This algorithm assumes a model where there is a

limited number of bandwidth sizes, such that a size-k session

requests bk units of bandwidth with a probability of PbðbkÞ;

rk ¼ lk=mk; lk is the mean arrival rate of size-k calls, m21
k is

the mean holding time of size-k calls, M is the number of

different bandwidth sizes, and C is the capacity of the link

which equals multiples of units of bandwidth. The expected

call blocking rate of size-k calls (Bk) can be found as follows:

Algorithm 1.

Set g(0) ¼ 1, g(j) ¼ 0 for j , 0.

For h ¼ 1,2,…,C

{

gðhÞ ¼ ð1=hÞ
XM
k¼1

ðbkÞrkgðh 2 bkÞ: ð1Þ

}

Set

G ¼
XC
h¼0

gðhÞ: ð2Þ

Fig. 1. The configuration of the network used in simulating the VDD and other algorithms, (simulation tool: Bones Designer).

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–26 15

For h ¼ 0,1,…,C

{

qðhÞ ¼ gðhÞ=G: ð3Þ

}

Bk ¼
XC

h¼C2bkþ1

qðhÞ: ð4Þ

In Section 2.2, we use Algorithm 1 to derive an algorithm

that allocates bandwidth between CoSs of non-stationary

traffic sharing a common link with the objective of

controlling the ratios between call blocking rates of different

CoSs. For simplicity, and without loss of generality, we

consider two CoSs.

2.2. Controlling call-blocking probabilities for two CoSs of

non-stationary traffic with variable size bandwidth requests

Our objective is to dynamically allocate bandwidth

between two CoSs, such that the ratio of class-2 blocking

rate ðB2
pÞ to class-1 blocking rate ðB1

pÞ is b, over the decision

interval td. A class-1 call requests a bandwidth b1
m with

probability P1
bðb

1
mÞ; a class-2 call requests a bandwidth b2

n

with probability P2
bðb

2
nÞ: Class-1 mean arrival rate is A1

calls/s and class-2 mean arrival rate is A2 calls/s. Class-1

mean holding time is S21
1 s, class-2 mean holding time is

S21
2 : We also define �b1 : the average bandwidth size of class-

1 calls, �b2 : the average bandwidth size of class-2 calls,

l1
m ¼ P1

bðb
1
mÞA1; l

2
k ¼ P2

bðb
2
nÞA2 calls/s, m1

m ¼ S1; ;m; and

m2
n ¼ S2; ;n, m ¼ 1; 2;…;M1 and n ¼ 1; 2;…;M2; where

M1 is the number of possible bandwidth sizes at class-1 and

M2 is the number of possible bandwidth sizes at class-2. In

general, we assume non-stationary stochastic process where

the mean arrival rate of class-k is AkðtÞ; t is time. However,

the holding time is assumed to be a stationary process with

constant mean value (1/Sk) seconds. We assume that

›AkðtÞ

›t
< 0:0 for t0 # t # t0 þ td; ð5Þ

thus the system is assumed to be under stationary traffic

throughout the decision interval td.

An important phenomenon arises here, at each decision

instance a situation where the allocated capacity is less than

the utilization of class-k may occur for a duration of time

equals to zk seconds, where zk is the time for class-k

utilization to drop below the newly allocated capacity. This

is because we assume that the system cannot drop any active

session, in order to maintain QoS parameters promised to

users. During this time interval (zk) all class-k arriving calls

will be blocked. Expected value of zkð �zkÞ can be exactly

found if all calls utilizing class-k require the same amount of

bandwidth. In this case, the problem becomes finding the

expected time for the number of class-k active calls to drop,

say from vk to v0
k; while no new calls are accepted. This is a

death process, thus:

�zk ¼
Xvk

m¼v0
k

1

mSk

seconds; ð6Þ

where the expression in Eq. (6) can be approximated as

follows:

�zk <
ðvk 2 v0

kÞ

Skðvk þ v0
kÞ=2

seconds: ð7Þ

The approximation in Eq. (7) is accurate as long as ðvk 2

v0
kÞ=v

0
k p 1; which is the case in a realistic backbone

network, especially as long as the assumption in Eq. (5) is

true. Note, v0
k is determined by the capacity allocation

decision for class-k.

However, in our case, sessions utilizing class-k require

different amounts of bandwidth. Thus, based on the

available information to the system, vk and v0
k can be

approximated as the utilization and the allocated capacity,

respectively, divided by the average size of the bandwidth

requests. Let Q1 be the allocated capacity (bps) to class-1,

(Wt 2 Q1) is the allocated capacity (bps) to class-2. Let uk

be the utilization (bps) of class-k just before calculating a

new bandwidth allocation decision. We can define the

following approximations for the length of the transient

period:

�z1 <
ðu1=�b

1 2 Q1=�b
1Þ

ðS1Þðu1=�b
1 þ Q1=�b

1Þ=2
Uðu1 2 Q1Þ seconds; ð8Þ

�z2 <
ðu2=�b

2 2 ½Wt 2 Q1�=�b
2Þ

ðS2Þðu2=�b
2 þ ½Wt 2 Q1�=�b

2Þ=2

£ Uðu2 2 ½Wt 2 Q1�Þ seconds: ð9Þ

Based on the assumption in Eq. (5), and assuming that A1

and A2 can be accurately estimated every td seconds, an

algorithm (Algorithm 2) for bandwidth allocation between

the two CoSs can be developed by incorporating the

transient effects in Eqs. (8) and (9), and by extending

Algorithm 1. The objective of Algorithm 2 is stated in

Eq. (10).

Every td seconds, find Q1 such that:

Number of class 2 2 blocked calls throughout td seconds

Number of class 2 1 blocked calls throughout td seconds
¼ b:

ð10Þ

Note, in Algorithm 2, all bandwidth quantities must be

integer numbers, the allocation decision is updated every td
seconds, Q1ðnÞ is the nth allocation decision.

Algorithm 2.

Estimate A1 and A2.

Measure u1 and u2.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–2616

Set Q0
1 ¼ Q1ðn 2 1Þ

While (ldl . e)

{

Set g1ð0Þ ¼ 1; g2ð0Þ ¼ 1; g1ðjÞ ¼ 0 for j , 0, g2ðjÞ ¼ 0

for j , 0.

For h ¼ 1; 2;…;Q0
1

{

g1ðhÞ ¼ ð1=hÞ
XM1

k¼1

ðb1
kÞ

P1
bðb

1
kÞA1

S1

 !
g1ðh 2 b1

kÞ: ð11Þ

}

For h ¼ 1; 2;…; ½Wt 2 Q0
1�

{

g2ðhÞ ¼ ð1=hÞ
XM2

k¼1

ðb1
kÞ

P2
bðb

2
kÞA1

S2

 !
g2ðh 2 b2

kÞ ð12Þ

}

Set

G1 ¼
XQ0

1

h¼0

g1ðhÞ: ð13Þ

Set

G2 ¼
X½Wt2Q0

1�

h¼0

g2ðhÞ: ð14Þ

For h ¼ 0; 1;…;Q0
1

{

q1ðhÞ ¼ g1ðhÞ=G1: ð15Þ

}

For h ¼ 0; 1;…; ½Wt 2 Q0
1�

{

q2ðhÞ ¼ g2ðhÞ=G2: ð16Þ

}

B1
p ¼

XM1

k¼1

P1
bðb

1
kÞ

XQ0
1

h¼Q0
1
2b1

k
þ1

q1ðhÞ: ð17Þ

B2
p ¼

XM2

k¼1

P2
bðb

2
kÞ

X½Wt2Q0
1�

h¼Q0
1
2b2

k
þ1

q2ðhÞ: ð18Þ

f ¼
ðA2B2

pðtd 2 �z2Þ þ A2
�z2Þ=A2td

A1B1
pðtd 2 �z1Þ þ A1

�z1=A1td

;

ð �z1 from Eq: ð8Þ and �z2 from Eq: ð9ÞÞ ð19Þ

If (f . b

{

Q0
1 ¼ Q0

1 2 1:

}

If f , b

{

Q0
1 ¼ Q0

1 þ 1:

}

d ¼ f 2 b.

}

Q1ðnÞ ¼ Q0
1

For understanding Eqs. (11–14), reader is advised to

refer to Ref. [8]. Eqs. (17) and (18), define the average

blocking rates for the two CoSs. The second summation

finds the probability of blocking a specific size request and

the first summation finds the average probability of blocking

any-size request. In Eq. (19), the effect of the transient

periods, approximated in Eq. (8) and (9), is included. Class-

k blocking probability found in Eqs. (17) and (18) is

meaningful after the end of the transient period, if it exists.

Nominator in Eq. (19) divides the expected number of

blocked class-2 calls throughout the decision period (td) by

the number of all calls expected throughout the same period.

Denominator of Eq. (19) does the same, but for class-1.

Note also, in Eq. (19), the values of �z1 and �z2 belong to one

the following three cases, ð �z1 ¼ 0; �z2 ¼ 0Þ; ð �z1 ¼ 0; �z2 . 0Þ;

or ð �z1 . 0; �z2 ¼ 0Þ: It is clear that the inclusion of the

transient response in the calculations of the DBA equations

will work as a slowing tool. It will slow down the changes in

the allocated bandwidth if a sudden and large change occurs

in the demands. This is desirable, since by this, the network

will not make dramatic changes in the allocations unless

new demands pattern are long-lived. e is a parameter that

defines the desired accuracy in forcing the differentiation

ratio b.

In this paper, we try to emphasize the importance of

accurate predictions of demands. We show, by utilizing the

above algorithm, that estimating average arrival rates of two

CoSs based on local information is not efficient, even if

networks have simple structures. To overcome this problem,

which is a serious one in CP schemes, we propose a novel

algorithm that utilizes signaling messages in connection-

oriented networks with reservations to approach global

optimality in predicting demands at each router/switch.

3. Loss network analysis

In this section, we provide a loss network analysis for a

multi-class network, for simplicity and without loss of

generality we will restrict the analysis to two CoSs.

However, this analysis can be extended to any number of

CoSs.

Let set N be the set of all nodes in a network that supports

two connection-oriented CoSs.

Let i; j [N; where i – j.

Let lij be the output port connecting node i to j.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–26 17

A flow is defined as a sequence of output ports visited by

the traffic of one or more sessions carrying information

between two nodes. f
ij
v;n is the nth flow moving through lij

and belongs to class v, v ¼ 1, 2. Two traffics connecting the

same two nodes, but each one moving through different

intermediate nodes are considered as two different flows.

aðf
ij
v;nÞ is the average arrival rate of calls forming the flow

f
ij
v;n; the arrival process is assumed to be Poisson. For each lij

we define a tree T
ij
v ; which is a set that contains all f

ij
v;n;

n ¼ 1; 2;…;s
ij
v ; where s

ij
v is the total number of flows at lij

that belong to class v. Any flow that belongs to class v and

passes through lij is a member of T
ij
v : For every tree T

ij
v ; we

define roots R
ij
v and branches B

ij
v : R

ij
v is a set that contains r

ij
v;n;

n ¼ 1; 2;…;s
ij
v where r

ij
v;n is the part of f

ij
v;n that starts at the

source of f
ij
v;n and ends at node i. B

ij
v is a set that contains b

ij
v;n;

n ¼ 1; 2;…;s
ij
v where b

ij
v;n is the part of f

ij
v;n that starts at

a node j and ends at the destination of f
ij
v;n: We define T1ðT

ij
v Þ

which is a group of trees. A tree T
xy
v [T1ðT

ij
v Þ if and only if

there exists at least one flow f
ij
v;n [T

ij
v such that lxy [f

ij
v;n:

We call the group T1ðT
ij
v Þ the group of son-trees (first

generation trees) of T
ij
v : Similarly, T2ðT

ij
v Þ is the group of

grandson-trees (second generation trees) of T
ij
v : A tree

Tab
v [T2ðT

ij
v Þ if and only if there exists at least one flow

f
ij
v;n [T

ij
v such that lxy [f

ij
v;n and there exists at least one

flow f
xy
v;k [T

xy
v such that lab [f

xy
v;k: In a similar way, we can

define TzðT
ij
v Þ; where z can take any value between 0 and 1.

Note that T0ðT
ij
v Þ ¼ {T

ij
v }:

Claim 1. There exists a bandwidth allocation algorithm

that can perform as optimal as a centralized algorithm in

a multi-class connection-oriented network while working

in a distributed way and requiring an amount of

information much less than the global demand matrix.

A detailed proof for the above claim is documented in

Appendix B. So far, we claim the existence of an algorithm

that runs in a distributed way but still can approach global

optimality by collecting an amount of information much

less than the global demand matrix. We believe VDD is a

very strong candidate to be such an algorithm.

In a practical environment, the demand of any flow is not

known a priori. Demands can be measured, and based on

measured demands over an averaging window of Dt starting

at time t0; demands can be predicted throughout ðt0 þ

Dt; t0 þ 2DtÞ: The accuracy of this prediction depends on the

nature/correlation of the variation in demands and on Dt. As

Dt increases, above a certain value, the correlation between

successive intervals decreases. On the other hand, as Dt

decreases below a certain value, there will not be enough time

to estimate the average arrival rate of calls and hence estimate

the demand. In Ref. [9], it was shown that the variations in

aggregated demands are usually slow enough such that a

decision interval of 1 h would even be faster than necessary.

Measuring demand needs time and so does broadcasting

information. In addition to timing considerations, there are

complicated forms of dependency among decisions com-

puted at different output ports throughout the whole multi-

class network. With all these considerations, and based on

previous discussions, we developed the VDD algorithm. In

the Section 4, we explain and state the VDD algorithm.

4. The virtual demand distribution (VDD) algorithm

Let td be the decision interval.

Let tu be the update interval.

Td ¼ mtu; where m $ (maximum number of hops),

this is a necessary condition.

The following requirements are necessary for any

network for it to be able to support the VDD algorithm:

1. Signaling packets (call-setup packets) must be used to

establish any new connection.

2. Packets belonging to a specific session have to follow the

same path that was assigned initially by the network.

3. Acknowledgments have to follow the same path—in the

reverse direction—that was followed by the call-setup

packets. Acknowledgments have to keep all the infor-

mation collected by the call-setup packets.

4. Call-setup packets belonging to different flows and

moving through the same output port must have different

labels, or can be identified and assigned different labels.

5. Call-setup packet must continue its journey to the

destination edge device, even if the requested

bandwidth is rejected by an intermediate node.

The above requirements can be fulfilled by ATM networks

Ref. [10]. MPLS architecture can easily support the above

requirements too. Each call-setup packet records the

following information at each output port it moves through:

1. Whether or not this output port has accepted this new call

under the specified CoS.

2. The percentage increase or decrease of the expected

blocking rate—based on the current updated decision—

with respect to the current measured blocking rate under

the specified CoS. We call this the Virtual Percentage

Change in Blocking Rate (VPCBR).

This information must be written in the call-setup packet

in a way that reflects the order in which the output ports

have been visited by. Also, any output port, say lij; must

know its order when it writes information in any call-setup

packet and bind this order O
ij
Lv;n

with the label L
ij
v;n of that

call-setup packet. L
ij
v;n is the label assigned to flow f

ij
v;n at

output port lij: This binding needs to be done one time when

a new flow starts to move through an output port.

At each output port, the following data is retrieved from

each Acknowledgment (ACK) that moves through it. To

simplify the notation, we will drop the superscript ij. Also,

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–2618

we define lv;nðkÞ to be the kth output port visited by the nth

flow fv;n at the current output port at which the algorithm is

running, k ¼ 1; 2;…; YLv;n
; where YLv;n

is the number of

output ports visited by the flow labeled by Lv;n:

Assume that the following data is going to be collected

and worked with independently, at each output port. A

linked-list data structure is to be created, each label Lv;n is

assigned one list. Each element of the list assigned to Lv;n

contains four counters and two real numbers. CALv;n
ðkÞ to

count number of accepted vth class calls, CRLv;n
ðkÞ to count

number of rejected vth class calls, dLv;n
ðkÞ to record VPCBR

value of the vth CoS at the kth output port of the flow labeled

Lv;n; k ¼ 1; 2;…; YLv;n
; v ¼ 1; 2:

Briefly, the basic idea in the VDD algorithm is to let

every output port computes and declares a virtual decision

every tu seconds. The decision is virtual because it will not

be implemented physically. It can be interpreted as if the

output port is ‘saying’: ‘I’m planning to implement this

decision, so, other output ports try to optimize your

decisions based on my decision’. However, we do not

distribute the virtual decision itself. Rather, we distribute

the expected effect of this virtual decision on the current

blocking rate at this specific output port. Note that, by this

idea, we give the network a chance to converge to the

optimal allocation without physically changing the allo-

cations more frequently, since rapid changes in the

allocations will not be helpful in stabilizing QoS routing

in a multi-class network. In the following, we will first

present a pseudo-code of the algorithm and then we explain

how it works in more details.

While (network is running)

{

initialize all counters;

x ¼ 0; set clock ¼ 0;

wait tr seconds;

for (x ¼ 1 to m)

{

t ¼ 0;

while (t # tu)

{

if (ACK arrived)

{

read label Lv;n;

;k ¼ 0; 1; 2;…; YLv;n
do:

{

read dLv;n
ðkÞ;

CALv;n
ðkÞ ¼ CALv;n

ðkÞ þ 1; if the call was

accepted at lv;nðkÞ;

CRLv;n
ðkÞ ¼ CRLv;n

ðkÞ þ 1; if the call was

rejected at lv;nðkÞ;

}

}

}

Virtual_Decision(1);

}

if (this link is a DownLink)

{compute and declare the semi-final-1 VPCBR //

which equals the last computed VPCBR}

else (wait until all semi-final-1 VPCBRs are received

from all lv;nðOLv;n
þ 1Þ; n ¼ 1; 2;…;sv; v ¼ 1; 2Þ

{Virtual_Decision(2) \\ this is a semi-final-1

VPCBR}

wait tpr seconds;

if (this link is a DownLink)

{Virtual_Decision(1) \\ this is a semi-final-2

VPCBR}

else (wait until all semi-final-2 VPCBRs are received

from all lv;nðOLv;n
þ 1Þ; n ¼ 1; 2;…;sv; v ¼ 1; 2Þ

{Virtual_Decision(3) \\ this is a semi-final-2

VPCBR}

if (this link is an UpLink)

{Virtual_Decision(4) \\ this is a final VPCBR}

else (wait until all final VPCBRs are received from all

lv;nðOLv;n
2 1Þ; n ¼ 1; 2;…;sv; v ¼ 1; 2Þ

{Virtual_Decision(3) \\ this is a final VPCBR}

when (clock ¼ td){physically implement Q1}

}

Virtual_Decision(e) \\ this is a function that accepts an

integer (1,2,3, or 4)

{

switch (e){

case 1: {A ¼ 1;B ¼ OLv;n
2 1}

case 2: {A ¼ OLv;n
þ 1;B ¼ Yv;n}

case 3: {A ¼ 1;B ¼ Yv;n; such that k – OLv;n
}

case 4: {A ¼ 2;B ¼ YLv;n
}

}

Av ¼
Xsv

n¼1

CALv;n
ð1Þ þ CRLv;n

ð1Þ

xtu

YB

k¼A

ð1 2 cLv;n
ðkÞÞ

 !
;

v ¼ 1; 2: ð20Þ

Where:

cLv;n
ðkÞ ¼

CRLv;n
ðkÞ

CALv;n
ðkÞþCRLv;n

ðkÞ

 !
if CRLv;n

ðkÞ. 0

�ð1þ dLv;n
ðkÞÞ;

dLv;n
ðkÞ; if CRLv;n

ðkÞ ¼ 0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

ð21Þ

Feed A1 and A2, computed in Eq. (20), into Algorithm 1

and find Q1; \\ new virtual bandwidth allocation decision

dv ¼
ðEBRv 2CBRvÞ

CBRv

; \\new VPCBR at this output port

Declare the VPCBR \\ i.e. the dv;

Where: EBR1 ¼ Expected Blocking Rate under 1st CoS due

to the current virtual decision. Feed A1 and Q1 into

Algorithm 1 to get EBR1.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–26 19

EBR2 ¼ Expected Blocking Rate under 2nd CoS due to

the current virtual decision. Feed A2 and [Wt 2 Q1] into

Algorithm 1 to get EBR2.

CBR1 ¼ Current Blocking Rate measured under 1st CoS.

CBR2 ¼ Current Blocking Rate measured under 2nd

CoS.

The algorithm can be explained as follows:

After every physical implementation of bandwidth

allocation, the algorithm waits for tr seconds. This is to

wait for the transient response to approximately die. tr can

be designed to be an adaptive parameter, but since we are

following the slow variations of demands, we can simply set

tr based on the worst case scenario. As we explained earlier,

during a transient period, all incoming calls will be rejected

until the utilization drops below the new allocated

bandwidth. These rejected calls if accounted for, will feed

the algorithm with wrong information, which is why the

algorithm must wait until the transient period ends. The time

needed for the transient period to end can be approximately

estimated as in Eqs. (8) and (9).

Throughout every update interval tu, information is

collected at each output port from the returning ACK

packets. For example, at output port lij; the algorithm

collects the rate of accepting and rejecting calls at each

output port related to T
ij
v ; v ¼ 1; 2: At the same time, the

algorithm collects all the VPCBRs declared at all output

ports related to T
ij
v ; v ¼ 1; 2: During the first m updates, the

algorithm considers only information collected from all

output ports related to R
ij
v ; v ¼ 1; 2: Here, the algorithm does

not look at output ports related to B
ij
v ; v ¼ 1; 2; it is clear

that, if the algorithm does look at both the roots and

branches of the tree T
ij
v at the same time, oscillation in the

decisions can occur. The idea of looking only at the roots of

the tree during the first m updates can be interpreted as

providing a chance for the new demands to ‘dig’ through the

network. This is why we required the satisfaction of the

condition m $ (maximum number of hops), so information

about new demands originating at the UpLinks will have a

chance to reach the most-distanced possible DownLinks.

At clock ¼ xtu, where x # m, algorithm computes the

expected demand on both CoSs by simply multiplying the

total arrival rate (both accepted and rejected calls) and

the end-to-end blocking probability for r
ij
v;n; n ¼ 1; 2;…;s

ij
v ;

v ¼ 1; 2; then adding the results (Eq. (20)). Note that, the

total arrival rate for a specific flow is the same at all output

ports visited by this flow.

At each output port related to any r
ij
v;n; the expected

blocking rate is computed based on the measured blocking

rate up to clock ¼ (x)(tu) and the declared VPCBR at that

output port at clock ¼ (x 2 1)tu (Eq. (21)). Note that, in Eq.

(21) the expected blocking rate at a specific output port is

considered to be the VPCBR itself if the measured blocking

rate were zero. The expected demand is then used to compute

a new virtual bandwidth allocation Q1, based on the desired

objective function. Then, this new virtual allocation will

be used to compute and declare the new VPCBR at

clock ¼ (x)(tu) at lij: The word ‘declare’ means that if any

signaling packet moves through lij after clock ¼ xtu, it will

carry this new VPCBR to other output ports.

For clock . (m)(tu), the finalization stage starts. A

serious problem must be faced in this stage, that is, which

output ports will implement their final decisions first and in

what order? By looking at the simple case shown in Fig. 2,

one can recognize the dependency that all output ports’

decisions have on each other. After careful study and

intensive simulations, we reach the following protocols that

need to be followed in the final stage.

Once the mth decision is declared, all DownLinks declare

their semi-final-1 decisions, which are basically the mth

decisions themselves at these DownLinks. The semi-final-1

decision is computed in a similar way to the decisions that

are made during the first m updates, with a major difference

that, at lij; only output ports related to B
ij
v ; v ¼ 1; 2; are

considered in the computations. So, in the semi-final-1

decision, the algorithm looks at output ports after lij: This is

why, at a DownLink, the semi-final-1 decision is the same as

the last regular decision, since there are no output ports after

a DownLink. In general, any output port lij needs to wait

until the first output port of every b
ij
v;n; n ¼ 1; 2;…;s

ij
v ; v ¼

1; 2; declares its semi-final-1 VPCBR. Note that, when an

output port computes the semi-final-1 VPCBR, the VPCBRs

collected from B
ij
v ; v ¼ 1; 2; are the semi-final-1 VPCBRs.

The declaration of semi-final-1 decisions may be viewed as

if there is a decision wave propagating from downstream

nodes to upstream nodes, we call this wave a semi-final-1

decision wave.

Once a DownLink (say lij) declares its semi-final-1

VPCBR, it waits for Tpr seconds (propagation time), which

is the required/expected time for the semi-final-1 decision

wave to reach all the UpLinks. This time depends on the

maximum number of hops and on the signaling rate

throughout the backbone network, which can be easily

estimated. So, after tpr seconds, all DownLinks compute and

declare the semi-final-2 decisions which are computed

similarly to the semi-final-1 decisions with a major

difference that, at lij; all output ports related to T
ij
v ; v ¼

1; 2; are considered in the computations. In general, any

output port lij needs to wait until the first output port of every

b
ij
v;n; n ¼ 1; 2;…;s

ij
v ; v ¼ 1; 2; declares its semi-final-2

VPCBR. Note that, when lij computes the semi-final-2

Fig. 2. A schematic view of a network that shows two trees only.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–2620

VPCBR, the VPCBRs collected from B
ij
v , v ¼ 1; 2; are the

semi-final-2 VPCBRs, while the VPCBRs collected from

R
ij
v ; v ¼ 1; 2; are the semi-final-1 VPCBRs. The declaration

of semi-final-2 decisions may be viewed as if there is a

decision wave propagating from downstream nodes to

upstream nodes, we call this the semi-final-2 decision wave.

Once an UpLink (say lij) receives all semi-final-2

VPCBRs from the first output port of every b
ij
v;n;

n ¼ 1; 2;…;s
ij
v ; v ¼ 1; 2; it declares the final decision. In

general, any output port lij needs to wait until the last output

port of every r
ij
v;n; n ¼ 1; 2;…;s

ij
v ; v ¼ 1; 2; declares its final

VPCBR. The final VPCBRs are computed similarly to the

semi-final-2 VPCBRs.

Note that, when lij computes the final VPCBR, the

VPCBRs collected from B
ij
v , v ¼ 1; 2; are the semi-final-2

VPCBRs, while the VPCBRs collected from R
ij
v ; v ¼ 1; 2;

are the final VPCBRs. The declaration of final decisions

may be viewed as if there is a decision wave propagating

from upstream nodes to downstream nodes, we call this the

final decision wave. At a synchronized instance, clock ¼ td,

all output ports physically implement the final decisions that

were computed through the final decision wave. ðtd 2 mtu 2

trÞ should be greater than 3tpr to ensure that all output ports

compute the final VPCBR.

So, the finalization stage is composed of three decision

waves, after pumping virtual demands through the network

for m update intervals, which is enough to ensure that the

effects of new demands can reach the most-distanced node

in the network. The first decision wave (semi-final-1) starts

to provide the output ports with information about how

downstream links responded to the offered virtual demands.

The second and third decision waves, (semi-final-2) and

(final), work as correction waves for some possible wrong

information that might be generated by the first decision

wave, as we explain later.

One may argue that information is being distributed by

the signaling packets and not by independent flooding

packets, and that may result in missing some information

about specific flows if they are not active and do not have

signaling packets during a specific tu interval. Actually, this

is what the VDD algorithm can perfectly overcome, since

the expected demand is computed based on measurements

of the average arrival rate of different flows and based on

updated information about latest virtual decisions of all

related output ports. One can easily realize that, if a specific

flow is not active or completely dead through a specific tu
interval, then this means the contribution of this flow to the

total expected demand is insignificant. Hence, even if the

algorithm did not receive updated information about this

path, the effect will be absolutely negligible.

5. Performance analysis

In this section, we present the results of testing the

performance of the VDD algorithm. We compare

the performance of the algorithm with a SD algorithm that

uses locally estimated demands. So, both VDD and SDD

algorithm utilize Algorithm 2. However, SD estimates

average arrival rate of both CoSs using local measurements,

while VDD utilizes signaling messages in a coordinated

mechanism to gain wider vision and higher accuracy in

estimating average arrival rate of both CoSs every decision

interval.

5.1. Simulation settings

Fig. 1 shows configuration of the simulated network. The

sophisticated simulation tool (Bones Designer) was used to

build a two-class multi-node network. This network was

built to emulate a real backbone network. Each node

represents a router; each router is connected to a LAN—not

shown in the figure—via a GateWay. Each LAN generates a

stream of calls (sessions) based on a Poisson random

process. Traffic generated at a specific LAN is distributed on

all possible destinations forming a group of flows based on

fixed routing (shortest path). The average arrival rate of

sessions under each flow varies slowly, following a

sinusoidal shape with a period of 48 h. The phase of this

sinusoid is different from one flow to another. Another

slower sinusoidal function with a period of 196 h was used

to classify sessions into 1st class and 2nd class under each

flow at each LAN, such that the maximum of the sinusoid

corresponds to 10% of the sessions being 1st class and 90%

being 2nd class. At the minimum of sinusoid, the opposite

occurs. Thus, a non-stationary traffic/demand is generated

for a period of 48 h.

Average arrival rate of different flows was set to congest

the network, in order to test the performance of different

algorithms. The requested bandwidth was generated follow-

ing a Binomial distribution with �b1 ¼ �b2 ¼ 1:0 Mbps. The

requested bandwidth was quantized with a step of 100 Kbps.

Minimum requested bandwidth was limited to 100 Kbps

and the maximum to 10 Mbps. Thus, M1 ¼ M2 ¼ 100.

Holding time was modeled as an exponential distribution

with S21
1 ¼ S21

2 ¼ 10 min. The links’ bandwidth, Wt ¼ 3.0

Gbps.

For the VDD algorithm, we used the following settings

td ¼ 20 min, tu ¼ 2 min, tr ¼ 4 min, tpr ¼ 1 min, and

m ¼ 6. For the SD algorithm, the decision interval was set

to be equal to td, in order to make the comparison valid. The

SD algorithm counts the number of 1st and 2nd CoSs calls

arriving throughout the td interval, in order to estimate the

average arrival rate of both CoSs.

As we mentioned earlier, the goal of VDD algorithm is to

provide accurate predictions of demands of different CoSs.

It is up to the network designer to choose the objective

function to be optimized. For this investigation, we chose a

simple objective function to demonstrate how well the

algorithm can perform. So the VDD algorithm is not the

DBA itself, but rather, it is a tool to provide accurate

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–26 21

prediction of demands that can be used by DBA algorithms.

In this simulation, we simply chose b ¼ 2.

5.2. Simulation results

Since our objective is to force the ratio of the 2nd class

blocking rate to the 1st class blocking rate to be two at any

output port (b ¼ 2), we selected l45 to be monitored, since it

is in the middle of the network. Fig. 3 shows the blocking

rate of both the 1st and 2nd CoS versus time at l 45 for

the VDD algorithm, Fig. 4 shows the performance of SD

algorithm. It is clear that the VDD algorithm outperforms

the SD algorithm, proving the wider vision that VDD

enjoys. Fig. 4 shows the VDD approximately maintaining

b ¼ 2 almost all the time, while SD deviated from the value

b ¼ 2 most of the time. Fig. 5 shows utilization and

bandwidth allocation decisions for the VDD algorithm at

l 45, it can be noticed how the algorithm shapes the

utilization of both CoSs gradually to enforce the ratio b ¼ 2.

To clarify the importance of global vision, Fig. 6 shows

utilizations and bandwidth allocation decisions for the VDD

algorithm at l57: It is interesting to compare this figure to

Fig. 7, which shows the equivalent performance of the SD

algorithm. Note, how the bandwidth allocation decisions in

the SD algorithm mistakenly congested the 2nd CoS during

a specific time interval while there are free resources

available, as can be noticed by comparing the 1st class

utilization to the allocated bandwidth for the 1st CoS. This

can happen simply because the SD algorithm cannot

estimate how many of the arriving calls are being accepted

by the DownLinks. However, the VDD algorithm is able to

evenly distribute the extra resources.

In another experiment, we broke link l56 at a specific

instance and intentionally increased the percentage of

1st class calls generated at node 1 and moved through l56

to make the effect of breaking l56 more recognizable. Fig. 8

shows the performance of the VDD algorithm while Fig. 9

shows the performance of the SD algorithm. Again, we

can see how the SD algorithm failed to notice the effect of

breaking l56; while the VDD algorithm perfectly estimated

the effect of this event and allocated resources,

accordingly.

Fig. 3. Blocking rates under the VDD at link 4-5.

Fig. 4. Blocking rates under the SD at link 4-5.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–2622

5.3. Tradeoffs regarding the VDD algorithm

The most important feature of VDD algorithm is its

ability to have a wider vision when implementing a

bandwidth allocation decision. VDD algorithm does not

require extra signaling packets, which is a very desirable

criterion. It can be considered as a robust algorithm, since it

is not affected by failures in some parts of the network, and it

will always try to provide the best prediction of demands

based on the most recent available information. Dynamic

resource allocation based on prediction of demands has been

proposed in many previous works, the work in Ref. [11,12]

is an example of that.

As the Internet increasingly becomes the largest and the

most complicated machine in the world, and as the world

converges into one community, designing and policing

Fig. 5. Utilizations and allocations under the VDD algorithm at link 4-5.

Fig. 7. Utilizations and allocations under the SD algorithm at link 5-7.

Fig. 6. Utilizations and allocations under the VDD algorithm at link 5-7.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–26 23

the network based on local geographical information will no

longer provide adequate results. The VDD algorithm

collects information about demands and congestion from

relevant flows that can start and end at any location in the

world, thus avoiding this problem.

On the other hand, VDD algorithm adds more overhead

on the signaling packets and requires software upgrades at

all backbone routers where this algorithm would be

implemented. But this overhead is acceptable or even

lower than what was proposed in some previous works.

Like the frameworks proposed in Ref. [13,14], where

negotiation protocols with much more overhead than what

we proposed in this work were proposed. When the

network is underutilized, the VDD algorithm could be

considered as an over-engineered approach. The complex-

ity of optimizing an objective function may become high

if the network supports many CoSs, however, the

complexity involved in the mechanism of VDD would

not increase significantly as the number of CoSs or VPs

increases.

6. Conclusion

The importance of accurate predictions of demands in a

multi-class multi-nodes connection-oriented network with

bandwidth segregation led us to develop a novel bandwidth

allocation algorithm, the VDD. Simulations showed that the

VDD outperforms an equivalent SD algorithm. Results

under non-stationary two-class traffic with Poisson arrivals

in a multi-node network showed that VDD was able to near-

optimally allocate resources to the two CoSs based on the

selected objective function. Although we were not able to

mathematically prove that the VDD algorithm can produce

globally optimized decisions, we showed by network

analysis the existence of an algorithm that can issue globally

optimized decisions while operating in a distributed manner,

by collecting extra information about the network. Such

information still would be much less than the information

needed by a centralized algorithm. The potential of the VDD

algorithm to be used as a benchmark in large network

analysis increases its importance.

Fig. 8. Performance of the VDD when link 5-6 was broken.

Fig. 9. Performance of the SD algorithm when link 5-6 was broken.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–2624

Toward the development of the VDD algorithm, we

analyzed the prediction of call blocking rates in a single-link

adopting a CP scheme with two CoSs of non-stationary

traffic, and developed a recursive algorithm to allocate

bandwidth between the two CoSs with the objective of

enforcing a specific ratio between the call blocking rates of

the two CoSs. This recursive algorithm considered

the blocking transient effects that may be experienced by

calls in a CP scheme. Then, the mathematical analysis was

extended to multi-class multi-node connection-oriented

networks adopting CP scheme under non-stationary traffic

conditions. Then the VDD algorithm was motivated by this

loss networks analysis and evaluated by extensive

simulations.

Appendix A

In this appendix, we review previous work on predicting

call blocking rate experienced by calls with stationary

Poisson arrival process, stationary exponential holding time,

and variable-size requests with known distribution. Such

systems are known as stochastic Knapsack systems. We

show that the recursive algorithm (Algorithm 1), which is

detailed in Section 2.1, is the most suitable to our needs in

this research. The formulas and algorithms in this section

were derived in a clear way in Ref. [8].

Let the requested bandwidth be a positive real value (b)

with a density function fbðbÞ; Bp: blocking probability, l:

mean arrival rate, m: mean service rate, and Wt: total

capacity. A closed form formula for Bp was found when

fbðbÞ is uniform and 0 # b # Wt. The probability of

blocking a request of size b is:

BpðbÞ ¼ 1 2
J0ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðWt 2 bÞ=Wt

p
Þ

J0ð2
ffiffi
r

p
Þ

ðA1Þ

where r ¼ l=m; J0(·) is the modified Bessel function of order

0. Thus, we can write:

Bp ¼
1

Wt

ðWt

0
BpðbÞdb: ðA2Þ

The problem in Eq. (A1) is the assumption that fbðbÞ is

uniform over 0 # b # Wt. In any real network, usually the

maximum possible value for b is a small fraction of Wt. In

addition, the distribution of requested bandwidth is far from

uniform.

The other alternative is to consider a limited number of

bandwidth sizes, such that a size-k session requests bk units

of bandwidth with a probability of PbðbkÞ: In the context of

our analysis, we have lk ¼ lPbðbkÞ and mk ¼ m; ;k: Let
kb ¼ ½b1b2…bM�; kn ¼ ½n1n2…nM�; where ni is the number of

size-i active calls in the link. An exact expression was

found, not closed form though, for the probability of

blocking a size-k call ðBpðbkÞÞ:

BpðbkÞ ¼ 1 2

X
kn[Sk

YM

j¼1
r

nj

j =nj!X
kn[S

YM

j¼1
r

nj

j =nj!
; ðA3Þ

where Sk ¼ {kn [S : kb·kn # Wt 2 bk} and S ¼ {kn [IM :
kb·kn # Wt}: I is the set of non-negative integers. So, we

can write:

Bp ¼
XM
k¼1

PbðbkÞBpðbkÞ: ðA4Þ

The expression in Eq. (A3) cannot be computed easily

for reasonable values of M and Wt. A recursive algorithm

exits to compute the expression in Eq. (A3). It was shown in

Ref. [8] that this recursive algorithm works well for large

values of M and Wt. This is important, because in a real

backbone we expect large values of Wt for sure. This

recursive algorithm is detailed in Section 2.1. The formula

in Eq. (A3) gives an exact answer for the blocking rates for

very reasonable model assumptions that suite very well the

problem under study in this work. Thus, the recursive

algorithm that solves this formula was selected to be a

building block in the novel algorithm (VDD) proposed in

this paper.

One more technique that needs to be explored is the

asymptotic approximation. This approximation becomes

more accurate as Wt increases, which is a desired

behavior in our analysis. However, unfortunately, it

seems no closed form formula can be derived from this

approximation. The following equations constitute the

approximation:

BpðbkÞ ¼ bk

d

Wt

; ðA5Þ

d ¼
e
2ða=sÞ

2s2

s
ða=s

21
e
2x2

2s2 dx

; ðA6Þ

s2 ¼

XM
k¼1

b2
krk

Wt

; ðA7Þ

a ¼
ffiffiffiffi
Wt

p
2

XM
k¼1

bkrkffiffiffiffi
Wt

p : ðA8Þ

Another problem in this approximation is that it gives

accurate results as long as lal # 1.0. If this approximation is

to be used in a practical situation, lal can reach high values,

especially when the demand is higher than total serving

power. Our simulations showed that the approximation is

inaccurate, at all, for large values of lal.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–26 25

As we can see, a closed-form formula that can provide us

with the expected blocking rate in the case of variable size

bandwidth requests is not available, neither in an exact nor

in an approximate form. Thus, based on the above review of

previous work, it is clear that the recursive algorithm,

Algorithm 1 in Section 2.1, is the best approach to build

upon, in order to find an approach for bandwidth allocation

between CoSs with the objective of forcing specific

differentiation ratios between the call blocking rates of

these different CoSs.

Appendix B

Proof of Claim 1 (stated in Section 2). In the following we

mean by an output port related to a tree that there is a flow

member of this tree such that this output port is a member of

this flow, by a decision a bandwidth allocation decision.

Consider any output port lij in a connection-oriented

network that supports two CoSs.

(1) Let lst be any output port such that lst – lij where

s; t; i; j [N, s – t; i – j:

(2) Assume there is at least one f
ij
v;k [T

ij
v such that lst [

f
ij
v;k: Then, the effect that TrðTst

v Þ may have on the

decision at lij is implied in the state/information at lst;

where r ¼ 0; 1; 2;…;1:

(3) If there is no f
ij
v;k [T

ij
v such that lst [f

ij
v;k; then state/

information at lst either has no effect on the decision at

lij or have an indirect effect if and only if there exists a

TrðT
ij
v Þ such that there exists a tree [TrðT

ij
v Þ such that

lst is related to this tree, where r ¼ 1; 2;…;1: Note r

starts from 1 and not from 0.

(4) For the state/allocation at lst to have no effect on the

decision at lij then ;v, v ¼ 1; 2; ;r; r ¼ 0; 1; 2;…;1;

there is no TrðT
ij
v Þ such that lst is related to any tree

[TrðT
ij
v Þ: This scenario is shown in Fig. 2.

(5) So, there should exist an algorithm that only needs

to know aðf
ij
v;nÞ ;f

ij
v;n [T

ij
v ; ;n; n ¼ 1; 2;…;s

ij
v ; ;v;

v ¼ 1; 2 and the state/information at each output port

(say lxy) related to any flow [ðT
ij
1 or T

ij
2 Þ; in order to

issue an optimal decision at lij: Note that, the state/

information at each output port lxy is in itself a function

of all f
xy
v;n [T

xy
v and state/information at each port

related to any flow [ðT
xy
1 or T

xy
2 Þ. A

The state/information at an output port is a general term

that, in the worst case, can be an information package

containing the demands of all flows composing the tree at

that output port. Note that, when the state/information at an

output port is designed for the worst case, we are actually

implementing a centralized algorithm with one improve-

ment, that demands on irrelevant flows are not considered

by the algorithm. In the best case, state/information can be

brief information about some parameters of interest like

utilization and blocking rates of the two CoSs. Worst case

and best case here are in terms of complexity.

References

[1] J. Chan, D. Tsang, Comparison of static and dynamic bandwidth

allocation schemes for multiple QoS classes in ATM network,

Singapore ICCS ’94 Proceedings 2 (1994) 732–782.

[2] A. Maunder, P. Min, Dynamic bandwidth allocation to virtual paths

IPCCC ’98 IEEE International (1998) 94–100.

[3] E. Rosen, A. Viswanathan, R. Callon, Multi-protocol label switching

architecture, IETF (2001) RFC 3031.

[4] K. Kar, M. Kodialam, T.V. Lakshman, Minimum interference routing

of bandwidth guaranteed tunnels with MPLS traffic engineering

applications, IEEE JSAC (2000) 2566–2579.

[5] E. Dinan, D.O. Awduche, B. Jabbari, Analytical framework for

dynamic traffic partitioning in MPLS networks, ICC 2000 3 (2000)

1604–1608.

[6] R. Cue’rin, H. Ahmadi, M. Naghshineh, Equivalent capacity and its

application to bandwidth allocation in high-speed networks, IEEE

JSAC 9 (7) (1991) 968–981.

[7] I.C. Paschalidis, J.N. Tsitsiklis, Congestion-dependent pricing of

network services, IEEE/ACM Transactions on Networking 8 (2)

(2000) 171–184.

[8] K.W. Ross, Multiservice Loss Models for Broadband Telecommuni-

cation Networks, Springer, London, 1995.

[9] A. Odlyzko, The economics of the internet: utility, utilization, pricing,

and quality of service, AT&T Labs-Research (1998).

[10] W. Stallings, Data and Computer Communications, Fifth ed.,

Prentice-Hall, Englewood Cliffs, NJ, 1997.

[11] S. Gupta, S. Bose, R. Harris, L. Berry, Distributed dynamic bandwidth

allocation and management for self-healing broadband networks with

multi-class traffic, IEEE GLOBECOM’98 2 (1998) 1166–1171.

[12] H. Saito, Trials of dynamic bandwidth allocation in ATM networks,

Proceedings of IEEE ATM Workshop, 1997, pp. 141–146.

[13] E.W. Fulp, D.S. Reeves, On-line dynamic bandwidth allocation,

Proceedings of the International Conference on Network Protocols,

1997, pp. 143–141.

[14] S. Jordan, H. Jiang, Connection establishment in high-speed networks,

IEEE JSAC 13 (7) (1995) 1150–1161.

S. Taha, M. Kavehrad / Computer Communications 27 (2004) 13–2626

	Dynamic bandwidth allocation in multi-class connection-oriented networks
	Introduction
	Single-link analysis
	Call-blocking probability for one CoS of stationary traffic with variable size bandwidth requests
	Controlling call-blocking probabilities for two CoSs of non-stationary traffic with variable size bandwidth requests

	Loss network analysis
	The virtual demand distribution (VDD) algorithm
	Performance analysis
	Simulation settings
	Simulation results
	Tradeoffs regarding the VDD algorithm

	Conclusion
	References

